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A New Reduced-Order Model of SAW
Interdigital Transducers

Oscar Antonio Peverini, Renato Oraenior Member, IEEEand Riccardo Tascone

Abstract—The Green'’s function method is generally agreed to X A<
be the most satisfactory technique for the rigorous analysis of sur- 5 ]
face-acoustic-wave interdigital transducers (IDTs). However, its y
direct application to response investigations or optimization-based
design activities is limited by its computational complexity. In

this paper, we present a new reduced-order model of IDTs based

on a moment-matching technique and on the singular value
decomposition. Several numerical and experimental examples
demonstrate the accuracy and the efficiency of the method.

Index Terms—Cauchy method, interdigital transducers, re-
duced-order model, SAW devices.
Fig. 1. Geometry of the IDT.

|. INTRODUCTION )
are used to expand the unknown charge density and almost

I N RECENT years, advances in both theory and computgnaytical expressions for the moments have been derived.
tion have allowed to develop computer-aided design (CAGphe authors demonstrate the accuracy and the advantages of
software based on the Green’s function method (GFM) for thge proposed method for several transducer configurations.
rigorous analysis of surface-acoustic-wave (SAW) devices [Hihe present technique allows a reduction of the CPU time of
[2]. As is well known, the analysis via the GFM requires the sggnout one order of magnitude in comparison with the direct

lution of a linear system of siz& x IV, wherelV is the number appication of the GFM in conjunction with the GMRES
of basis functions used to represent the unknown charge disffigorithm without any significant loss of accuracy.

bution. The two major factors affecting the GFM computational

efficiency are the evaluation of the moment matrix and the solu- 1. GEM

tion of the linear system. Although an efficient implementation

of the GFM can take advantage from a suitable choice of theThe type of IDTs analyzed here consists of an array of elec-
basis function set [3] and from the use of iterative algorithmgodes parallel to thg-axis, printed on the surface= 0 of a

as the general minimization of residues (GMRES) [4], the corRiezoelectric substrate, as shown in Fig. 1. In a two-dimensional
putational complexity of the method may be still too high for th@analysis, in which the mass-loading effect is neglected, the po-
direct application in optimization-based design activities and fgntial®(z) on the surface = 0 is related to the surface charge

the analysis of long and nonperiodic structures. densityo(x) by the convolution integral
Recently, model order-reduction techniques based on
moment matching and the Padé approximation, such as the teo N
method of asymptotic waveform evaluation (AWE) and the ¢(w) = . G(z —a)o(a’) dz @)

Cauchy method, were applied with success to the analysis of

several electromagnetic devices [5], [6]. The basic idea of th%ﬁereG(az) is the electric Green’s function of the substrate.

methods is to develop an approximate transfer function ofA So, the analysis of apodized IDTs can be performed in this

given linear system from a limited set of spectral solutions and - ework by introducing the concept of equivalent voltage
of its derivatives (moments). In this paper, for the first time

the Cauchy method has been applied to the frequency-respo%%%?ization’ in which, however, diffraction effects are ignored
evaluation of SAW interdigital transducers (IDTs). In order * he IDT behavior is described by the integral equation

to increase the computational efficiency of the method, a new
set of orthogonalized problem-matched basis functions, nuz VP (z) =
merically generated via singular value decomposition (SVD), ~ Wi =

oo
G(x — 2')o(2')da! Yz eW,

)

hle o}
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the Galerkin’s method of moments, we introduce a set of baseduce their support as the finger edge is approached, so as to
functions{ f,.(x)} and expand-(z) as fit the divergent charge distribution. Since the Green’s function
is computed directly in the spectral domain, it is convenient to
evaluate thel.,,,,, matrix elements in the same domain by ap-
= anfa(x) (3)  plying the Parseval's theorem. According to (7) and with the
= choice (8), the momeméﬁ,’?;),, can be decomposed as

whereq,, are unknown charge coefficients aids the number *) (e1)<k> ()
of basis function defined on the whole transducer. Substitutindmn = Ly~ + Ly,
(3) into (2) and projecting upon the set of basis functions yields 9)

(&) (k)

bulk, asy bulk, res (k)
+ Ll 2 Ltk res)

where we have distinguished the various contributions, as in (7).

O = Z Linnctn, m=1..N ) Obviously, the electrostatic terrﬁﬁ,‘ilg does not depend on
[10], so that the momentsﬁfilg vanish fork > 1. As for the
where momentsLﬁ,i?f") , it is possible to derive the following expres-
sions fork > 0:
M
N AT TG © o e d
= saw —_ _  Jtsaw _ i—1 N —1X;
.1. Lgnn) 4(:m(:n82 W2 ‘ ( 1)( )Rk(Xz)e !
Lyn = / / [ (2)G(x — o) fo(2') d2’ da. (6) wa =1 (10)
With slight modifications, this formulation can be applied 1 m £ n and

the IDT with loaded, shorted, or isolated electrodes [8]. After
solving the linear system of equations (4), we can compute the T
charge distribution and, from that, the IDT input admittance. £{&="" %<M) </3k+ﬂk + M)
The Green'’s functior7(z) can be cheaply evaluated in the Xo Xo X Xo
spectral domaig, wheref is the spectral variable conjugate to
«. The substrate backsurface is generally processed in order to
reduce the coherence of reflected bulk waves so that the s{flf-the diagonal termss,,, is the SAW slownessir.., is the
strate is modeled here as semiinfinite. Hence, it is convenienf&idue of'(s) ats = s.a, and
introduce the frequency-independent transformed Green’s func-
tionI'(s) = wG(£/w), wheres = & /w is the slowness [9]. The Xo =2wssawen
function'(s) may be decomposed as [3] Xy =wssaw(|5m

11)

)
Xy = wssaw ([6m — | —en +em)
X, :wssaw(|6m On| + €n + em)
Xy :wssaw(|6m —0On | + €, — Fm).

F(S) _ F(el)(s) + F(saw)(s) + F(bulk, asy) (S) + F(bulk, res)(s)

whereT(*Y(s) is the electrostatic parf;*>V)(s) is the SAW

contribution, I'™u%:2s¥) () is the extracted asymptotic bulk

contribution, and ("% %) () is the residual bulk part. All the

contributions, excepl'®™%:r*s)(s) for general case analysis, Ro(Xi)=1 VX So(Xo)=1 VX0 fo=7=-1

have analytical expressions [3]. (13)
Although weighted first-kind Chebyshev polynomials better

suit the singularity of the charge distribution at the finger edgdsor & > 1, the kth degree polynomial®,; andS; and the co-

in this paper, we use a set of pulse functions with different sugfficients/3; and~; can be derived by analytical differentiating

ports, which yield almost analytical expressions for the m¢10) and (11).

mentsL{Y), (kth derivative ofL,,, with respect to the angular ~ As for the asymptotic bulk contribution {52 asy)® , it is

frequencyw). These moments are required in the applicatigmossible to derive the following analytical expressmn.

of the Cauchy method to the approximation of the IDT transfer

Furthermore,

function, as explained in Section Ill. Therefore, we introduce (e sy (™ o 4 -
the basis functions Ly = = F——— Re 2(—1)1 F(X;)
Py
fulx) = ”27(37) n=1,...,N @) (14)
€n

for m # n and
with W,, = [6,, — €., 6, +¢,], wheres,, ande,, denote the mid-

point coordinate and the half-width of theh pulse. To max- (bulk, asy)® _ Coo
imize the representation efficiency of pulse functions, we can ~»» T 4me2 w282 (1 N RE{F (XO)}) (15)

max



PEVERINI et al. NEW REDUCED-ORDER MODEL OF SAW ITDs 1787

for the diagonal terms?,, = lim, .. (|s|(I'(s) — I'*D(s) —  wherem;, are the computedq low-order moments off (w).
F<Sa“’>(s))), smax IS the slowness value beyond which thé&ince the Taylor expansion has a limited bandwidth, approxi-
Green'’s function has reached its asymptotic behavior @nd mation (22) is converted into a Padé rational function, which
have the same expressions as in (12) with, substituted by has a larger domain

Smax. Besides, we have introduced the function .
Aw) =l ol tho
F(u) =e™ — que™" — u? Expint (yu) (16) agwi+--+aw+l

(23)

whereExpint denotes the exponential integral [11]. By analyt>€tting (22) equal to (23) and cross-multiplying by the denom-

ically differentiating the previous equations, we obtain the fol1&LOr Yields a set of linear equations that can be solved for the

. . bulk, asy)*) i coefficients{a,,} and{b,,}. In the case where one expansion
lowing expressions fok ™ ™ for & z I point is not iufﬁ}c;ient ti) co}ver the desired frequency band, mul-
[ (bulk asy)® C., tiple expansion points can be used in order to generate a set of

mn = Amemenst, kT2 Padé functions [17]. The Cauchy method deals with approxi-
i mating the response of a system, over the entire band of interest,

Re {Z(_l)(i—l)Rk(Xi)e—JXi } (17) by a ratio of two polynomials [18]. Given the values of the func-

Pl tion and its derivatives at a few points, the coefficients are ob-

tained by solving a linear system by the least square method,

for m # n and whereas the order of the polynomials are estimated via the SVD
. C ' [19]. It has to be remarked that, in the Cauchy method, the ap-
L(bulk,res)® P ] (Xk + Re{Si(Xo)e™*}) proximation of the system response is accomplished by using

2 S inaxt the information available in more that one frequency point.

(18) In this paper, we investigate the suitability of the Cauchy

method for approximating the frequency response of SAW

for the diagonal terms, where the polynomi&lg and S, and IDTs, i.e., the transducer input admittaricéw).

the coefficienty; are easily evaluated from (14) and (15).

The momentd, 22 ™9™ are to be computed numericallya. Cauchy Method
and, in order to speed up their calculation, we compute in ad-
vance and tabulate on a suitable range the frequency—indepI

dent functions

The basic idea of the Cauchy method is to approximate the
B respons&’(w) in the frequency range of interest by a the
ratio of two polynomials

(bulk, res)*) s v\ _ 1 oo k1 (bulk, res) —38X
| A (X) = (—g8) TP I (5) e ds.

il 5
2T J oo E apw?

(29) - As(w =0
Y(w) = BS((w)) == . (24)
The integration is performed via an adaptive Gauss—Legendre b prwp
quadrature rule. Inserting ™ %)™ (X in (6) and inter- =0

changing the order of integration yields o . ]
The unknown coefficients,, andb, are obtained by equating

the estimated moment¥ *)(w;) to the known moments
Y ) (w;) [kth angular frequency derivative &f(w) evaluated
in the expansion point; with j = 1 --- P]. This procedure

mn

(bulk, res)*) _ oo k1 (bulk, res)t*
L = 2 (w2)Tpn(z)dz  (20)

where the subdomain functions leads to the solution of the linear system
1 toe
Tonl@) = g [ P o= )Pw, () e’ (@) A _B]m:o. (25)

are evaluated analytically. Also, the integrals defined in (20he matricesA andB have SizeVy,om X (S + 1) andNy,om X
are efficiently computed by a Gauss—Legendre quadrature ryfe + 1), respectively, wher&V,,,, = Ele( Ngggm +1) and

based on, typicallylNe = 10 = 20 abscissas. N is the number of derivatives used in tlith expansion
point, and their expressions can be found in [18]. The system
IIl. REDUCED-ORDER MODEL (25) is solved by the least-squares method.

Recently, different moment-matching techniques have beerA crucial point in the Cauchy method is the evaluation of
developed for the efficient analysis of circuits and electromatfie degrees’' and D. A preliminary choice can be done on the
netic devices [14], [15], such as the AWE method [16] an@asis of the uniqueness condition for the approximation, i.e.,
Cauchy method [18]. In the AWE method, the response of tHéunom > S + D + 1, [18]. Once the matribxC = [A  —B]

system under analysis, i.¢4,(w), is approximated by its trun- has been computed, the choice of the degrees can be refined by
cated Taylor expansion imposing thatS + D +1 equals the rank of. A second relation

X betweenS and D is obtained by observing that, normally, the
H(w) =mo+mw+--- +mg_1w’?™t  (22) choiceD = S + 1 yields the best approximation [14].

(1

H(w)
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The application of the Cauchy method to the IDT analys&re certainly problem matched. However, they are generally far
requires the computation of the momemg“>(wj). Itis easily from being orthogonal and this has adverse consequences in
demonstrated that *) (w) can be written as the application of the Cauchy method, which is known to be

. bl o an ill-conditioned algorithm. This problem can be solved by ap-
d*Y(w) _ 2 {_ﬁ &7 d*at(w) g wdT d*a (w)} plying the SVD to theV x P matrix A with elementsd,,, intro-
dwk Vil 2 dwh—t 2 dwk duced in (29). This decomposition has the faAm= USVH,
(26) whereU isaN x N unitary matrix,S is aN x P diagonal ma-

o o _trix with positive elements (singular values), awds a P x P
where the derivative of the vector of the charge coefficients $initary matrix [13]. The columns dU are the singular vec-

4 k—1 tors {u,, } and those corresponding to nonzero singular values
_Cz —a® = 1! Z Ch LE=D o0 (27) 1{S,} forman orthonormal basis in the subspace spanned by the
dw i—0 charge vectors(w,,). The significance of the various singular

) . . i i i vectors{u, } in the description is measured by the amplitude of
with Cj; - k!/[¢!(k —)!]. Since in the computation of the M0-y¢ corresponding singular valugs Since they range over sev-
mentsy ®)(w;) we need to evaluate in each expansion poiRl 4 orders of magnitude, not all the singular vectors are needed
the inverse of the high rank system matixthe numerical effi- 1 tain accurate results in the response curve. Also, inspec-
ciency of the method |_s_partly limited. Therefore,_ in order 1§, of the dynamic range of the singular value set allows us to
keep the algorithm efficient, we generate numerically, as dgscertain whether the frequency sampling is adequate. A small
scribed in Section 1lI-B, a new set of problem-matched bagignge means, in fact, that the corresponding singular vectors do
functions whereby the size of the matdxis remarkably re- i have sufficient span for an acceptable representation of the
duced. . charge distribution. Lef? < P be the number of singular vec-

A practical aspect of the C_a_uchy method concerns the el assumed to be adequate to represent the charge distribution.
known problem that the explicit use of the momekits) (w;) HenceQ is the “effective dimension” of the subspace that con-
may resultin ill-conditioned numerical computations [14], [17}ains the charge representation, at least in the band of interest.
A remedy to this problem is to use scaling, i.e., the origing)afine a new set of basis functions via
momentsY *)(w,) are replaced by*Y ®)(w;), wheren is a
suitable scaling factor. A good choice is the following: N

_ a(@) =Y fal@ua, 1=1,...,Q (30)
r L/ (N5 n=1
1 YO w))]
"=Pp Z <|y(1\f,§f’2,,,)(w,)|> ’ (28) which can be interpreted as a set of “orthogonalized problem-
=t ! matched basis functions.” They lead to the definition of a new
Although scaling provides better conditioned computations, wioment matrix
observed that the best results are obtained by using moments
of order not larger than three or four. Furthermore, in place of
using a single approximation in the whole frequency range \?/fh

. - . ) ) ere thelV x @ matrix Ug consists of the firs§ columns of
interest, it is more convenient to apply different representat|091se matrixU. In the basis defined by (30), the momekt&) (w)
of lower order, each defined in a frequency subdomain. ) y ’

can be written as

K = UgLUg (31)

B. Problem-Matched Basis Functions dky(w) 2 e dk_19*(w)
{_5 @ Juk-1

The numerical efficiency of the Cauchy method describeddw® |V
above is related to the size of the system malrixThis ma- 7 e, dF0*(w)
trix can be small if a set of basis functions is available that fits —5w® UQW} (32)
so closely the actual charge distribution that a small number
of them is sufficient for an accurate solution. The task of convhere

structing analytically such a set is very complicated and the N E1
evaluation of the matrix elements can be very time consuming. ﬂ — g — _K-1 Z L K*=Dg® (33)
For this reason, we adopted the numerical approach described dw =

in [12]. Let {aﬁ,‘“)(a:)} withp = 1, ..., P be the charge dis- _ o _ _
tributions at theP expansion frequencies used in the Cauctd® is the vector of the charge coefficients in the new basis.
method. They are obtained by the GFM, as described in Sddierefore, the presentimplementation of the Cauchy method is

tion 11, and have the following representation in the pulse fun¥€ry efficient because the derivatives if are computed ana-
tion basis{ f,,(x)}: lytically as explained in the previous sections and the siA€ of

is much smaller than that df.

N
of N @) =D Anpful) (29) C. Summary of the Numerical Procedure
=t In this subsection, we summarize the numerical procedure for
whereA,,, = a,(w,) Withn =1, ..., Nandp =1, ..., P. theevaluation of the approximated input admitta¥i¢e’) based

If these P charge distributions are used as basis functions, them the reduced-order model. The main steps are as follows.
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Admittance |mS]

170

160

180 190 200
frequency [MHz]

210

Admittance [imS]

1789

200 210 220 230 240 250 260
frequency [MHz]

O " !
170 180 190 270

Fig. 2. Input admittance of a 40-finger uniform IDT. Standard GF¥),(  Fig. 3. Input admittance of the apodized IDT described in the text. Standard
reduced-order model wnhV,&ng = 1 (—-), reduced-order model with GFM (x), reduced-order model with’{?) = 2 (- -), reduced-order model
N2 =2 (=), both based on six expansion poirits)( with N{) = 3 (=), both based on eight expansion poirii.(

Step 1) Evaluate the charge coefficients vectdssat each
of the P selected frequency points via the standard
GFM.

Step 2) Compute the SVD of matrik, (29), and inspect the
dynamic range of the singular values. If the spanis _
not sufficient, then, add a frequency point and repeat
Step 1). Otherwise, select thiemost significant sin-
gular vectors and define the projection mafkiy,.

Step 3) For each expansion poiy, define the new system

Admittance [

10

o

4

(98]

matrix K and compute the momenis™ (w,,) via
(32) and (33).

Step 4) For each frequency subdomain, typically containing
two/three expansion points, sBt= S + 1 andS +
D = Nyom — 1 and build matrixC = [A —B],
(25). On the basis of the SVD of matr&, rede-
fine the choice of the polynomials degrees so that
p(C) = S+ D +1. Solve the linear system (25) viaFig. 4. Input admittance of the apodized IDT described in the text. Standard
the |east Square method and eva|uate the |nput éa:M (X) reduced-order model Wltﬁ\mom =3 (—) and based on nine
mittance over the entire frequency subdomain. expansion pointsLy).

200 220 240
frequency [MHz]

180 260

generation of a SAW, while the one at 198 MHz is associated to
the excitation of bulk waves with quasi- shear horlzontal (QSH)
We applied the present method to the analysis of IDTs fpolarization. The reduced-order model W), = 1is al-
integrated acoustooptic devices MY LiNbO3 operating at ready in good agreement with the GFM solution, but the intro-
optical wavelengths around= 1.55 um. In these devices, the duction of the second derivatives in the model enables to reduce
IDTs are designed in order to exhibit a SAW resonance at abohi¢ difference to negligible values. The CPU time is practically
172 MHz [20]. In all the results based on the reduced-ordgéite same in the two cases and about one order of magnitude
model, we used different approximations in each frequency swmaller than that of the standard GFM.
domain defined between two expansion points. As an exampldn order to further validate the model, we also consider
of the accuracy of the reduced-order model, Fig. 2 shows thpodized transducers. Figs. 3 and 4 show the input admittance
input admittance of a uniform IDT with 40 fingers. In this figurepf two different apodized IDTs with dummy fingers and with
we compare the simulation performed via the standard GFMfundamental cell containing three electrodes, with voltages
with four basis functions per fmger the S|mulat|on obtained-Vy, +V,, and —V;. The first transducer exhibits a3-dB
by the reduced-order model with{2, = 1 andNY)., = 2 band of about 20 MHz centered aroufid= 198 MHz, while
derivatives per expansion point. In the application of the SVibe second IDT was designed to exhibit a SAW resonance
method, the ratio of the smallest to the largest singular valuesis both 172 and 210 MHz. In both cases, the reduced-order
0.02 and all the singular vectors have been used as new basizlel withNﬁfﬁm = 3 yields results that are indistinguishable
(Q = P). The resonance at the lower frequency is related to them those obtained via the direct application of the GFM,

IV. NUMERICAL AND EXPERIMENTAL RESULTS
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(3]

(4]

(5]

(6]

Admittance [mS]

(71

(8]

175 180
frequency [MHz]

0 . .
160 165 170 190

9]

Fig. 5. Input admittance of an 80-finger uniform IDT. Measurement (—),
reduced-order model wittv{/) = 3 (- —) and based on three expansion [10]
points ().

but enables to remarkably speed up the evaluation of the IDTi1]
frequency response. Moreover, in both caggs; P was taken

and the ratios of the smallest to the largest singular value ar%z]
0.0092 and 0.0089, respectively.

As a last example of validity of the present technique, in
Fig. 5, we plotted the simulated and measured input admittanétlaS]
of auniform IDT with 80 fingers. The simulation was performed [14]
by the reduced-order model with six basis functions per finger,
P = 3 expansion points, and!)., = 3 derivatives in each [15]
expansion point, and was corrected for the value of the para-
sitic capacitance’;, (mostly due to the bonding pads) and the [16]
metallization loss resistanég,. We may observe that the infor-
mation included in the model enables to accurately predict the
SAW resonance at about 172 MHz, neglecting only small del”]
tails that are associated to highest derivatives of the frequency
response. Moreover, the required CPU time is more than onigs]
order of magnitude smaller in comparison with the direct appli-
cation of the GFM, implemented with the GMRES algorithm
for the solution of the linear system. [19]

V. CONCLUSIONS

In this paper, we have presented a novel model order-redU([:z-O]
tion technique for the rigorous analysis of SAW IDTs. Numer-
ical and experimental results confirm the efficiency and accu-
racy of the method. Since the present technique has been suc-
cessfully applied to a two-dimensional analysis in which the
mass-loading effect is neglected, we are planning to investigate
the suitability of the method to be extended to the three-dimen-
sional analysis based on the completex #4 dyadic Green’s
function, where the CPU time reduction should be even ma
impressive.

REFERENCES

[1] P. Ventura, J. M. Hodé, M. Solal, J. Desbois, and J. Ribbe, “Nume
ical methods for SAW propagation characterization,Pimoc. IEEE Ul-
trason. Symp.1998, pp. 175-186.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 10, OCTOBER 2001

P. Ventura, J. M. Hodé, and B. Lopes, “Rigorous analysis of finite SAW
devices with arbitrary electrode geometries,"Rroc. IEEE Ultrason.
Symp, 1995, pp. 257-262.

O. Méanner, K. C. Wagner, and C. C. W. Ruppel, “Advanced numerical
methods for the simulation of SAW devices,” froc. IEEE Ultrason.
Symp, 1996, pp. 123-130.

J. E. Bracken and Z. J. Cendes, “Asymptotic waveform evaluation for
S-domain solution of electromagnetic devicetfEE Trans. Magn.

vol. 34, pp. 3232-3235, Sept. 1998.

K. Lim Choi and M. Swaminathan, “Utilization of fast algorithm to An-
alyze embedded passive components using commercial EM Solvers,” in
6th IEEE Elect. Performance Electron. Packag. Topical Meeti997,

pp. 240-243.

R. F. Milsom, “Bulk wave generation by the IDT,” i@omputer-Aided
Design of Surface Acoustic Wave Devicedmsterdam, The Nether-
lands: Elsevier, 1976, pp. 64-81.

O. A. Peverini, R. Orta, and R. Tascone, “Rigorous electromechanical
analysis ofX—Y" LiNbO; interdigital transducers,” iRroc. ICEAA99

pp. 145-148.

R. F. Milsom, N. H. Reilly, and M. Redwood, “Analysis of generation
and detection of surface and bulk acoustic waves by interdigital trans-
ducers,”IEEE Trans. Sonics Ultrasoywvol. SU-24, pp. 147-166, May
1977.

A. R. Baghai-Wadji, O. Manner, and R. Ganf3-Puchstein, “Analysis and
measurement of transducer end radiation in SAW filters on strongly cou-
pling substrates,IEEE Trans. Microwave Theory Techol. 37, pp.
150-158, Jan. 1989.

M. Abramowitz and I. A. SteguniHandbook of Mathematical Func-
tions New York: Dover, 1970, pp. 228-254.

C. K. Aanandan, P. Debernardi, R. Orta, R. Tascone, and D. Trinchero,
“Problem-matched basis functions for moment method analysis—An
application to reflection gratingslEEE Trans. Antennas Propagatol.

48, pp. 35-40, Jan. 2000.

G. H. Golub and C. F. Van LoaMatrix Computations Baltimore,

MD: The Johns Hopkins Univ. Press, 1983, ch. 2-3.

P. Feldmann and R. Freund, “Efficient linear circuit analysis by Padé
approximation via the Lanczos proceslgEE Trans. Computer-Aided
Design vol. 14, pp. 639-649, May 1995.

J. Gong and J. L. Volakis, “AWE implementation for electromagnetic
FEM analysis,Electron. Lett,. vol. 32, no. 24, pp. 2216-2217, 1996.

X. Zhang and J. Lee, “Application of the AWE method with the 3-D
TVFEM to model spectral responses of passive microwave compo-
nents,”IEEE Trans. Microwave Theory Teclol. 46, pp. 1735-1741,
Nov. 1998.

E. Chiprout and M. S. NakhlaAsymptotic Waveform Evaluation and
Moment Matching for Interconnect AnalysisNorwell, MA: Kluwer,
1994.

K. Kottapalli, T. K. Sarkar, Y. Hua, E. K. Miller, and G. J. Burke, “Accu-
rate computation of wide-band response of electromagnetic systems uti-
lizing narrow-band information JEEE Trans. Microwave Theory Tegh.
vol. 39, pp. 682-687, Apr. 1991.

R. S. Adve, T. K. Sarkar, S. M. Rao, E. K. Miller, and D. R. Pflug,
“Application of the Cauchy method for extrapolating/interpolating
narrow-band system response&EE Trans. Microwave Theory Tech.
vol. 45, pp. 837-845, May 1997.

C. Duchet, C. Brot, and M. Di Maggio, “Interdigital transducer for
acousto-optic tunable filter on LiNb{' Electron. Lett, vol. 31, no.

15, pp. 1235-1237, 1995.

Oscar Antonio Peverini was born in Lisbon,
Portugal, in 1972. He received the Laurea degree
in telecommunications engineeringgufnma cum
laudag at the Politecnico di Torino, Turin, Italy,
in 1997, and is currently working toward the Ph.D.
degree in electronic engineering at the Politecnico di
Torino.

From August 1999 to March 2000, he was a
Visiting Member at the Applied Physics/Integrated
Optics Department, University of Paderborn,
Paderborn, Germany. His research interests include

o

[2] R. C. Peach, “Green function analysis for SAW devices with arbitrargumerical simulation and design of SAW waveguides and IDTs for integrated
electrode structures,” iRroc. IEEE Ultrason. Symp1997, pp. 99-103. acoustooptical devices.



PEVERINI et al. NEW REDUCED-ORDER MODEL OF SAW ITDs

Renato Orta (M'92—-SM’'99) received the Laurea de-
gree in electronic engineering from the Politecnico d
Torino, Turin, Italy, in 1974.

Since 1974, he has been a member of the De
partment of Electronics, Politecnico di Torino, first
as Assistant Professor, then as Associate Profess
and, since 1999, as Full Professor. In 1985, he we
a Research Fellow at the European Space Resear
and Technology Center (ESTEC) European Spal
Agency (ESA), Noordwijk, The Netherlands. In
1998, he was a Visiting Professor (CLUSTER

1791

Riccardo Tasconewas born in Genoa, Italy, in
1955. He received the Laurea degree in electronic
engineering from the Politecnico di Torino, Turin,
Italy, in 1980.

From 1980 to 1982, he was with the Centro Studi e
Laboratori Telecomunicazioni (CSELT), Turin, Italy,
where his research mainly dealt with frequency-se-
lective surfaces, waveguide discontinuities, and
microwave antennas. In 1982, he joined the Centro
Studi Propagatione e Antenne (CESPA), Consiglio
Nazionale delle Ricerche (CNR), Turin, Italy, where

Chair) at the Technical University of Eindhoven, Eindhoven, The Netherlandse was initially a Researcher and, since 1991, a Senior Scientist (Dirigente
He currently teaches courses on electromagnetic field theory and optidalRicerca). He is currently Head of the Applied Electromagnetics Section,
components. His research interests include the areas of microwave and optst#uto di Ricerca sull'lngeneria delle Telecomunicazioni e dell'Informazione
components, radiation and scattering of electromagnetic and elastic waves, @RtT1), a newly established institute of the CNR. He has held various teaching

numerical techniques.

positions in the area of electromagnetics at the Politecnico di Torino. His current
research activities are in the areas of microwave antennas, dielectric radomes,
frequency-selective surfaces, radar cross section, waveguide discontinuities,
microwave filters, multiplexers, and optical passive devices.



	MTT023
	Return to Contents


