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A New Reduced-Order Model of SAW
Interdigital Transducers

Oscar Antonio Peverini, Renato Orta, Senior Member, IEEE, and Riccardo Tascone

Abstract—The Green’s function method is generally agreed to
be the most satisfactory technique for the rigorous analysis of sur-
face-acoustic-wave interdigital transducers (IDTs). However, its
direct application to response investigations or optimization-based
design activities is limited by its computational complexity. In
this paper, we present a new reduced-order model of IDTs based
on a moment-matching technique and on the singular value
decomposition. Several numerical and experimental examples
demonstrate the accuracy and the efficiency of the method.

Index Terms—Cauchy method, interdigital transducers, re-
duced-order model, SAW devices.

I. INTRODUCTION

I N RECENT years, advances in both theory and computa-
tion have allowed to develop computer-aided design (CAD)

software based on the Green’s function method (GFM) for the
rigorous analysis of surface-acoustic-wave (SAW) devices [1],
[2]. As is well known, the analysis via the GFM requires the so-
lution of a linear system of size , where is the number
of basis functions used to represent the unknown charge distri-
bution. The two major factors affecting the GFM computational
efficiency are the evaluation of the moment matrix and the solu-
tion of the linear system. Although an efficient implementation
of the GFM can take advantage from a suitable choice of the
basis function set [3] and from the use of iterative algorithms,
as the general minimization of residues (GMRES) [4], the com-
putational complexity of the method may be still too high for the
direct application in optimization-based design activities and in
the analysis of long and nonperiodic structures.

Recently, model order-reduction techniques based on
moment matching and the Padé approximation, such as the
method of asymptotic waveform evaluation (AWE) and the
Cauchy method, were applied with success to the analysis of
several electromagnetic devices [5], [6]. The basic idea of these
methods is to develop an approximate transfer function of a
given linear system from a limited set of spectral solutions and
of its derivatives (moments). In this paper, for the first time,
the Cauchy method has been applied to the frequency-response
evaluation of SAW interdigital transducers (IDTs). In order
to increase the computational efficiency of the method, a new
set of orthogonalized problem-matched basis functions, nu-
merically generated via singular value decomposition (SVD),
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Fig. 1. Geometry of the IDT.

are used to expand the unknown charge density and almost
analytical expressions for the moments have been derived.
The authors demonstrate the accuracy and the advantages of
the proposed method for several transducer configurations.
The present technique allows a reduction of the CPU time of
about one order of magnitude in comparison with the direct
application of the GFM in conjunction with the GMRES
algorithm without any significant loss of accuracy.

II. GFM

The type of IDTs analyzed here consists of an array of elec-
trodes parallel to the-axis, printed on the surface of a
piezoelectric substrate, as shown in Fig. 1. In a two-dimensional
analysis, in which the mass-loading effect is neglected, the po-
tential on the surface is related to the surface charge
density by the convolution integral

(1)

where is the electric Green’s function of the substrate.
Also, the analysis of apodized IDTs can be performed in this
framework by introducing the concept of equivalent voltage
apodization, in which, however, diffraction effects are ignored
[7]. The IDT behavior is described by the integral equation

(2)

where labels the various fingers and denotes
the union of the fingers of the transducer. is a
pulse function with support and is the relevant applied
voltage. In order to solve the integral equation (2) by means of
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the Galerkin’s method of moments, we introduce a set of basis
functions and expand as

(3)

where are unknown charge coefficients andis the number
of basis function defined on the whole transducer. Substituting
(3) into (2) and projecting upon the set of basis functions yields

(4)

where

(5)

(6)

With slight modifications, this formulation can be applied to
the IDT with loaded, shorted, or isolated electrodes [8]. After
solving the linear system of equations (4), we can compute the
charge distribution and, from that, the IDT input admittance.

The Green’s function can be cheaply evaluated in the
spectral domain, where is the spectral variable conjugate to

. The substrate backsurface is generally processed in order to
reduce the coherence of reflected bulk waves so that the sub-
strate is modeled here as semiinfinite. Hence, it is convenient to
introduce the frequency-independent transformed Green’s func-
tion , where is the slowness [9]. The
function may be decomposed as [3]

(7)

where is the electrostatic part, is the SAW
contribution, is the extracted asymptotic bulk
contribution, and is the residual bulk part. All the
contributions, except for general case analysis,
have analytical expressions [3].

Although weighted first-kind Chebyshev polynomials better
suit the singularity of the charge distribution at the finger edges,
in this paper, we use a set of pulse functions with different sup-
ports, which yield almost analytical expressions for the mo-
ments ( th derivative of with respect to the angular
frequency ). These moments are required in the application
of the Cauchy method to the approximation of the IDT transfer
function, as explained in Section III. Therefore, we introduce
the basis functions

(8)

with , where and denote the mid-
point coordinate and the half-width of theth pulse. To max-
imize the representation efficiency of pulse functions, we can

reduce their support as the finger edge is approached, so as to
fit the divergent charge distribution. Since the Green’s function
is computed directly in the spectral domain, it is convenient to
evaluate the matrix elements in the same domain by ap-
plying the Parseval’s theorem. According to (7) and with the
choice (8), the moments can be decomposed as

(9)

where we have distinguished the various contributions, as in (7).
Obviously, the electrostatic term does not depend on

[10], so that the moments vanish for . As for the
moments , it is possible to derive the following expres-
sions for :

(10)

for and

(11)

for the diagonal terms; is the SAW slowness, is the
residue of at , and

(12)

Furthermore,

(13)

For , the th degree polynomials and and the co-
efficients and can be derived by analytical differentiating
(10) and (11).

As for the asymptotic bulk contribution , it is
possible to derive the following analytical expression:

(14)

for and

(15)
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for the diagonal terms;
, is the slowness value beyond which the

Green’s function has reached its asymptotic behavior and
have the same expressions as in (12) with substituted by

. Besides, we have introduced the function

(16)

where denotes the exponential integral [11]. By analyt-
ically differentiating the previous equations, we obtain the fol-

lowing expressions for for :

(17)

for and

(18)

for the diagonal terms, where the polynomials and and
the coefficient are easily evaluated from (14) and (15).

The moments are to be computed numerically
and, in order to speed up their calculation, we compute in ad-
vance and tabulate on a suitable range the frequency-indepen-
dent functions

(19)

The integration is performed via an adaptive Gauss–Legendre
quadrature rule. Inserting in (6) and inter-
changing the order of integration yields

(20)

where the subdomain functions

(21)

are evaluated analytically. Also, the integrals defined in (20)
are efficiently computed by a Gauss–Legendre quadrature rule
based on, typically, abscissas.

III. REDUCED-ORDER MODEL

Recently, different moment-matching techniques have been
developed for the efficient analysis of circuits and electromag-
netic devices [14], [15], such as the AWE method [16] and
Cauchy method [18]. In the AWE method, the response of the
system under analysis, i.e., , is approximated by its trun-
cated Taylor expansion

(22)

where are the computed low-order moments of .
Since the Taylor expansion has a limited bandwidth, approxi-
mation (22) is converted into a Padé rational function, which
has a larger domain

(23)

Setting (22) equal to (23) and cross-multiplying by the denom-
inator yields a set of linear equations that can be solved for the
coefficients and . In the case where one expansion
point is not sufficient to cover the desired frequency band, mul-
tiple expansion points can be used in order to generate a set of
Padé functions [17]. The Cauchy method deals with approxi-
mating the response of a system, over the entire band of interest,
by a ratio of two polynomials [18]. Given the values of the func-
tion and its derivatives at a few points, the coefficients are ob-
tained by solving a linear system by the least square method,
whereas the order of the polynomials are estimated via the SVD
[19]. It has to be remarked that, in the Cauchy method, the ap-
proximation of the system response is accomplished by using
the information available in more that one frequency point.

In this paper, we investigate the suitability of the Cauchy
method for approximating the frequency response of SAW
IDTs, i.e., the transducer input admittance .

A. Cauchy Method

The basic idea of the Cauchy method is to approximate the
IDT response in the frequency range of interest by a the
ratio of two polynomials

(24)

The unknown coefficients and are obtained by equating
the estimated moments to the known moments

[ th angular frequency derivative of evaluated
in the expansion point with ]. This procedure
leads to the solution of the linear system

(25)

The matrices and have size and
, respectively, where and

is the number of derivatives used in theth expansion
point, and their expressions can be found in [18]. The system
(25) is solved by the least-squares method.

A crucial point in the Cauchy method is the evaluation of
the degrees and . A preliminary choice can be done on the
basis of the uniqueness condition for the approximation, i.e.,

, [18]. Once the matrix
has been computed, the choice of the degrees can be refined by
imposing that equals the rank of . A second relation
between and is obtained by observing that, normally, the
choice yields the best approximation [14].
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The application of the Cauchy method to the IDT analysis
requires the computation of the moments . It is easily
demonstrated that can be written as

(26)

where the derivative of the vector of the charge coefficients is

(27)

with . Since in the computation of the mo-
ments we need to evaluate in each expansion point
the inverse of the high rank system matrix, the numerical effi-
ciency of the method is partly limited. Therefore, in order to
keep the algorithm efficient, we generate numerically, as de-
scribed in Section III-B, a new set of problem-matched basis
functions whereby the size of the matrix is remarkably re-
duced.

A practical aspect of the Cauchy method concerns the well-
known problem that the explicit use of the moments
may result in ill-conditioned numerical computations [14], [17].
A remedy to this problem is to use scaling, i.e., the original
moments are replaced by , where is a
suitable scaling factor. A good choice is the following:

(28)

Although scaling provides better conditioned computations, we
observed that the best results are obtained by using moments
of order not larger than three or four. Furthermore, in place of
using a single approximation in the whole frequency range of
interest, it is more convenient to apply different representations
of lower order, each defined in a frequency subdomain.

B. Problem-Matched Basis Functions

The numerical efficiency of the Cauchy method described
above is related to the size of the system matrix. This ma-
trix can be small if a set of basis functions is available that fits
so closely the actual charge distribution that a small number
of them is sufficient for an accurate solution. The task of con-
structing analytically such a set is very complicated and the
evaluation of the matrix elements can be very time consuming.
For this reason, we adopted the numerical approach described
in [12]. Let with be the charge dis-
tributions at the expansion frequencies used in the Cauchy
method. They are obtained by the GFM, as described in Sec-
tion II, and have the following representation in the pulse func-
tion basis :

(29)

where with and .
If these charge distributions are used as basis functions, they

are certainly problem matched. However, they are generally far
from being orthogonal and this has adverse consequences in
the application of the Cauchy method, which is known to be
an ill-conditioned algorithm. This problem can be solved by ap-
plying the SVD to the matrix with elements intro-
duced in (29). This decomposition has the form ,
where is a unitary matrix, is a diagonal ma-
trix with positive elements (singular values), andis a
unitary matrix [13]. The columns of are the singular vec-
tors and those corresponding to nonzero singular values

form an orthonormal basis in the subspace spanned by the
charge vectors . The significance of the various singular
vectors in the description is measured by the amplitude of
the corresponding singular values. Since they range over sev-
eral orders of magnitude, not all the singular vectors are needed
to obtain accurate results in the response curve. Also, inspec-
tion of the dynamic range of the singular value set allows us to
ascertain whether the frequency sampling is adequate. A small
range means, in fact, that the corresponding singular vectors do
not have sufficient span for an acceptable representation of the
charge distribution. Let be the number of singular vec-
tors assumed to be adequate to represent the charge distribution.
Hence, is the “effective dimension” of the subspace that con-
tains the charge representation, at least in the band of interest.
Define a new set of basis functions via

(30)

which can be interpreted as a set of “orthogonalized problem-
matched basis functions.” They lead to the definition of a new
moment matrix

(31)

where the matrix consists of the first columns of
the matrix . In the basis defined by (30), the moments
can be written as

(32)

where

(33)

and is the vector of the charge coefficients in the new basis.
Therefore, the present implementation of the Cauchy method is
very efficient because the derivatives ofare computed ana-
lytically as explained in the previous sections and the size of
is much smaller than that of.

C. Summary of the Numerical Procedure

In this subsection, we summarize the numerical procedure for
the evaluation of the approximated input admittance based
on the reduced-order model. The main steps are as follows.
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Fig. 2. Input admittance of a 40-finger uniform IDT. Standard GFM (�),
reduced-order model withN = 1 (–�–), reduced-order model with
N = 2 (–), both based on six expansion points ().

Step 1) Evaluate the charge coefficients vectors’s at each
of the selected frequency points via the standard
GFM.

Step 2) Compute the SVD of matrix, (29), and inspect the
dynamic range of the singular values. If the span is
not sufficient, then, add a frequency point and repeat
Step 1). Otherwise, select themost significant sin-
gular vectors and define the projection matrix .

Step 3) For each expansion point, define the new system
matrix and compute the moments via
(32) and (33).

Step 4) For each frequency subdomain, typically containing
two/three expansion points, set and

and build matrix ,
(25). On the basis of the SVD of matrix , rede-
fine the choice of the polynomials degrees so that

. Solve the linear system (25) via
the least-square method and evaluate the input ad-
mittance over the entire frequency subdomain.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

We applied the present method to the analysis of IDTs for
integrated acoustooptic devices in– LiNbO operating at
optical wavelengths around m. In these devices, the
IDTs are designed in order to exhibit a SAW resonance at about
172 MHz [20]. In all the results based on the reduced-order
model, we used different approximations in each frequency sub-
domain defined between two expansion points. As an example
of the accuracy of the reduced-order model, Fig. 2 shows the
input admittance of a uniform IDT with 40 fingers. In this figure,
we compare the simulation performed via the standard GFM
with four basis functions per finger, the simulation obtained
by the reduced-order model with and
derivatives per expansion point. In the application of the SVD
method, the ratio of the smallest to the largest singular value is
0.02 and all the singular vectors have been used as new basis
( ). The resonance at the lower frequency is related to the

Fig. 3. Input admittance of the apodized IDT described in the text. Standard
GFM (�), reduced-order model withN = 2 (– –), reduced-order model
with N = 3 (–), both based on eight expansion points ().

Fig. 4. Input admittance of the apodized IDT described in the text. Standard
GFM (�), reduced-order model withN = 3 (–) and based on nine
expansion points ().

generation of a SAW, while the one at 198 MHz is associated to
the excitation of bulk waves with quasi-shear horizontal (QSH)
polarization. The reduced-order model with is al-
ready in good agreement with the GFM solution, but the intro-
duction of the second derivatives in the model enables to reduce
the difference to negligible values. The CPU time is practically
the same in the two cases and about one order of magnitude
smaller than that of the standard GFM.

In order to further validate the model, we also consider
apodized transducers. Figs. 3 and 4 show the input admittance
of two different apodized IDTs with dummy fingers and with
a fundamental cell containing three electrodes, with voltages

, , and . The first transducer exhibits a3-dB
band of about 20 MHz centered around MHz, while
the second IDT was designed to exhibit a SAW resonance
at both 172 and 210 MHz. In both cases, the reduced-order
model with yields results that are indistinguishable
from those obtained via the direct application of the GFM,
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Fig. 5. Input admittance of an 80-finger uniform IDT. Measurement (—),
reduced-order model withN = 3 (– –) and based on three expansion
points ( ).

but enables to remarkably speed up the evaluation of the IDT
frequency response. Moreover, in both cases, was taken
and the ratios of the smallest to the largest singular value are
0.0092 and 0.0089, respectively.

As a last example of validity of the present technique, in
Fig. 5, we plotted the simulated and measured input admittance
of a uniform IDT with 80 fingers. The simulation was performed
by the reduced-order model with six basis functions per finger,

expansion points, and derivatives in each
expansion point, and was corrected for the value of the para-
sitic capacitance (mostly due to the bonding pads) and the
metallization loss resistance . We may observe that the infor-
mation included in the model enables to accurately predict the
SAW resonance at about 172 MHz, neglecting only small de-
tails that are associated to highest derivatives of the frequency
response. Moreover, the required CPU time is more than one
order of magnitude smaller in comparison with the direct appli-
cation of the GFM, implemented with the GMRES algorithm
for the solution of the linear system.

V. CONCLUSIONS

In this paper, we have presented a novel model order-reduc-
tion technique for the rigorous analysis of SAW IDTs. Numer-
ical and experimental results confirm the efficiency and accu-
racy of the method. Since the present technique has been suc-
cessfully applied to a two-dimensional analysis in which the
mass-loading effect is neglected, we are planning to investigate
the suitability of the method to be extended to the three-dimen-
sional analysis based on the complete 44 dyadic Green’s
function, where the CPU time reduction should be even more
impressive.
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